Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem
نویسندگان
چکیده
An important theorem of Banaszczyk (Random Structures & Algorithms ‘98) states that for any sequence of vectors of `2 norm at most 1/5 and any convex body K of Gaussian measure 1/2 in R, there exists a signed combination of these vectors which lands inside K. A major open problem is to devise a constructive version of Banaszczyk’s vector balancing theorem, i.e. to find an efficient algorithm which constructs the signed combination. We make progress towards this goal along several fronts. As our first contribution, we show an equivalence between Banaszczyk’s theorem and the existence of O(1)-subgaussian distributions over signed combinations. For the case of symmetric convex bodies, our equivalence implies the existence of a universal signing algorithm (i.e. independent of the body), which simply samples from the subgaussian sign distribution and checks to see if the associated combination lands inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which allows us to reduce to the case where the body is symmetric. As our second main contribution, we show that the above framework can be efficiently implemented when the vectors have length O(1/ √ logn), recovering Banaszczyk’s results under this stronger assumption. More precisely, we use random walk techniques to produce the required O(1)-subgaussian signing distributions when the vectors have length O(1/ √ logn), and use a stochastic gradient ascent method to implement the recentering procedure for asymmetric bodies. 1998 ACM Subject Classification G.3 [Probability and Statistics] Probablistic Algorithms
منابع مشابه
On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملProof of Constructive Version of the Fan-Glicksberg Fixed Point Theorem Directly by Sperner’s Lemma and Approximate Nash Equilibrium with Continuous Strategies: A Constructive Analysis
It is often demonstrated that Brouwer’s fixed point theorem can not be constructively proved. Therefore, Kakutani’s fixed point theorem, the Fan-Glicksberg fixed point theorem and the existence of a pure strategy Nash equilibrium in a strategic game with continuous (infinite) strategies and quasi-concave payoff functions also can not be constructively proved. On the other hand, however, Sperner...
متن کاملGeometric approach to sampling and communication
Relationships that exist between the classical, Shannontype, and geometric-based approaches to sampling are investigated. Some aspects of coding and communication through a Gaussian channel are considered. In particular, a constructive method to determine the quantizing dimension in Zador’s theorem is provided. A geometric version of Shannon’s Second Theorem is introduced. Applications to Pulse...
متن کاملFan-KKM Theorem in Minimal Vector Spaces and its Applications
In this paper, after reviewing some results in minimal space, some new results in this setting are given. We prove a generalized form of the Fan-KKM typetheorem in minimal vector spaces. As some applications, the open type of matching theorem and generalized form of the classical KKM theorem in minimal vector spaces are given.
متن کاملVector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کامل